Extensions 1→N→G→Q→1 with N=Dic5 and Q=C42

Direct product G=NxQ with N=Dic5 and Q=C42
dρLabelID
C42xDic5320C4^2xDic5320,557

Semidirect products G=N:Q with N=Dic5 and Q=C42
extensionφ:Q→Out NdρLabelID
Dic5:C42 = C4:C4xF5φ: C42/C22C22 ⊆ Out Dic580Dic5:C4^2320,1048
Dic5:2C42 = Dic5:2C42φ: C42/C2xC4C2 ⊆ Out Dic5320Dic5:2C4^2320,276
Dic5:3C42 = C4xC10.D4φ: C42/C2xC4C2 ⊆ Out Dic5320Dic5:3C4^2320,558
Dic5:4C42 = C42xF5φ: C42/C2xC4C2 ⊆ Out Dic580Dic5:4C4^2320,1023
Dic5:5C42 = C4xC4:F5φ: C42/C2xC4C2 ⊆ Out Dic580Dic5:5C4^2320,1025

Non-split extensions G=N.Q with N=Dic5 and Q=C42
extensionφ:Q→Out NdρLabelID
Dic5.1C42 = Dic5.C42φ: C42/C22C22 ⊆ Out Dic5160Dic5.1C4^2320,1029
Dic5.2C42 = M4(2)xF5φ: C42/C22C22 ⊆ Out Dic5408Dic5.2C4^2320,1064
Dic5.3C42 = M4(2):5F5φ: C42/C22C22 ⊆ Out Dic5808Dic5.3C4^2320,1066
Dic5.4C42 = C4xC8:D5φ: C42/C2xC4C2 ⊆ Out Dic5160Dic5.4C4^2320,314
Dic5.5C42 = D10.5C42φ: C42/C2xC4C2 ⊆ Out Dic5160Dic5.5C4^2320,316
Dic5.6C42 = D10.6C42φ: C42/C2xC4C2 ⊆ Out Dic5160Dic5.6C4^2320,334
Dic5.7C42 = D10.7C42φ: C42/C2xC4C2 ⊆ Out Dic5160Dic5.7C4^2320,335
Dic5.8C42 = C42:4F5φ: C42/C2xC4C2 ⊆ Out Dic580Dic5.8C4^2320,1024
Dic5.9C42 = C2xC8xF5φ: C42/C2xC4C2 ⊆ Out Dic580Dic5.9C4^2320,1054
Dic5.10C42 = C2xC8:F5φ: C42/C2xC4C2 ⊆ Out Dic580Dic5.10C4^2320,1055
Dic5.11C42 = C20.12C42φ: C42/C2xC4C2 ⊆ Out Dic5804Dic5.11C4^2320,1056
Dic5.12C42 = C2xC4xC5:C8φ: C42/C2xC4C2 ⊆ Out Dic5320Dic5.12C4^2320,1084
Dic5.13C42 = C2xC10.C42φ: C42/C2xC4C2 ⊆ Out Dic5320Dic5.13C4^2320,1087
Dic5.14C42 = C4xC22.F5φ: C42/C2xC4C2 ⊆ Out Dic5160Dic5.14C4^2320,1088
Dic5.15C42 = Dic5.15C42φ: trivial image320Dic5.15C4^2320,275
Dic5.16C42 = D5xC4xC8φ: trivial image160Dic5.16C4^2320,311
Dic5.17C42 = D5xC8:C4φ: trivial image160Dic5.17C4^2320,331

׿
x
:
Z
F
o
wr
Q
<